本篇内容介绍了“Numpy中array数组对象的储存方式(n,1)和(n,)有什么区别”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领...
本篇内容介绍了“Numpy中array数组对象的储存方式(n,1)和(n,)有什么区别”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
例如如果我们创建一个包含10个整型数的数组 a :
import numpy as np
a=np.arange(10)
a
结果为:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
则 a 包含了一个数据缓冲区,储存成如下的样子:
a.shape
数据的维度为:(10,)
在这里,shape=(10,)意味着这个数组仅仅被一个索引支配:从0到9。从概念上讲,假如我们使用这个单独的索引给 a 打上标签,那么 a 将看起来像这样:
reshape一个数组的操作不会改变数据缓冲区,而是创建一个新的解释数据的视窗。
b=a.reshape((2,5))
b
结果为:
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
这样我们的数据就会有两个维度来控制,其中一个的范围是从0到4,另一个的范围是从5到9。
我们举个例子,我们想要取出里面的1值,如何切片操作?
b[0,1]
“Numpy中array数组对象的储存方式(n,1)和(n,)有什么区别”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注捷杰建站网站,小编将为大家输出更多高质量的实用文章!